MOLECULAR DIAGNOSTICS IN CANCER TESTING

SAMPLE COPY, NOT FOR RESALE

Trends, Industry Participants, Product Overviews and Market Drivers
TABLE OF CONTENTS

1. Overview 8
 1.1 Statement of Report 8
 1.2 About This Report 8
 1.3 Scope of the Report 9
 1.4 Objectives 9
 1.5 Methodology 10
 1.6 Executive Summary 11

2. Introduction to Molecular Diagnostics 15
 2.1 Opening-up of Opportunities in Molecular Diagnostics 15
 2.2 Impact of the Human Genome Project on Molecular Diagnostics 17
 2.3 Considerations for Molecular and Clinical Diagnostics 17
 2.4 Molecular Diagnostics in the Post-Genomic Era 20
 2.5 Advances in Molecular Diagnostics Technologies 21
 2.6 Oligonucleotide Array Platforms 23
 2.7 Emerging Cancer Personalized Medicine Market 23
 2.7.1 Predictive Cancer Molecular Diagnostics 25
 2.8 Companion Tests for Drug Development 26
 2.9 Opportunities for IVDMAIA Companies 28

3. Cancer Diagnostics Molecular Testing Market 29
 3.1 Market Description 33
 3.1.1 Market Overview 33
 3.1.2 Tumor Markers 34
 3.1.3 Molecular Diagnostic Markers 40
 3.1.4 Competitive Landscape 41
 3.1.5 Sales and Marketing Strategies for Cancer Tests 44
 3.1.5.1 North American Market 45
 3.1.5.2 International Markets 46
 3.1.5.3 Europe 46
 3.1.5.4 Asia-Pacific 47

4. Molecular Diagnostic Tests for Cancer 48
 4.1 Cancer Diagnostic Tests 48
 4.1.1 Use of Genomics to Understand Cancer 49
 4.1.2 Molecular Diagnostic Tools Solutions 51
 4.1.3 Technology of Gene Expression Analysis 53
 4.1.3.1 Amplify and Detect Diminished Amounts of RNA Consistently 53
 4.1.3.2 Analyze Hundreds of Genes 54
 4.1.3.3 Employ Advanced Information Technology 54
 4.2 Breast Cancer 55
 4.2.1 Cancer Prognostic Assays 57
 4.2.1.1 Myriad Genetics (BRACA1 and BRACA2) 58
 4.2.1.2 Genomic Health (Oncotype DX) 58
 4.2.1.2.1 Single Gene Reporting (ER, PR, HER2) 60
 4.2.1.2.2 Node Positive (N+) 60
 4.2.1.2.3 Aromatase Inhibitors 60
 4.2.1.2.4 Product Development 60
 4.2.1.2.5 Product Development Opportunities in Breast Cancer 61
 4.2.2 InterGenetics, Inc. 61
 4.2.2.1 LabCorp (HER-2) 62
 4.2.2.2 Clariant, Inc. 64
 4.2.2.3 BioTheronostics (AviaraDx) 65
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1.7</td>
<td>Agendia B.V. (MammaPrint)</td>
<td>65</td>
</tr>
<tr>
<td>4.2.1.8</td>
<td>Oncogene Science (Wilex)</td>
<td>67</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Competition and Comparison of Methods</td>
<td>69</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Competitive Structure and Market Share Analysis</td>
<td>69</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Breast Cancer Molecular Diagnostic Testing Market Size</td>
<td>70</td>
</tr>
<tr>
<td>4.2.3.1.1</td>
<td>Global Market</td>
<td>70</td>
</tr>
<tr>
<td>4.2.3.1.2</td>
<td>U.S. Market</td>
<td>71</td>
</tr>
<tr>
<td>4.2.3.1.3</td>
<td>European Market</td>
<td>71</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Market Forecasts</td>
<td>72</td>
</tr>
<tr>
<td>4.2.3.2.1</td>
<td>Revenue Forecasts</td>
<td>72</td>
</tr>
<tr>
<td>4.2.3.3</td>
<td>Market Drivers and Restraints</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3.3.1</td>
<td>Market Drivers</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3.3.2</td>
<td>Market Restraints</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3.4</td>
<td>Breast Cancer Molecular Diagnostic Testing Assay Market and Technology Trends</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3.4.1</td>
<td>Breast Cancer Molecular Diagnostic Testing Assay Market Trends</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3.4.2</td>
<td>Breast Cancer Molecular Diagnostic Testing Assay Technology Trends</td>
<td>74</td>
</tr>
<tr>
<td>4.2.3.4.3</td>
<td>Breast Cancer Testing Assay Strategic Recommendations</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Colorectal Cancer Molecular Diagnostics Market</td>
<td>75</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Colon Cancer Testing Platforms</td>
<td>76</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>Genomic Testing</td>
<td>76</td>
</tr>
<tr>
<td>4.3.1.1.1</td>
<td>IVD Multiplex Index Analysis (MIA)</td>
<td>76</td>
</tr>
<tr>
<td>4.3.1.1.2</td>
<td>The BRAF Test</td>
<td>77</td>
</tr>
<tr>
<td>4.3.1.1.3</td>
<td>KRAS</td>
<td>77</td>
</tr>
<tr>
<td>4.3.1.1.3.1</td>
<td>Background on KRAS Mutation</td>
<td>77</td>
</tr>
<tr>
<td>4.3.1.1.4</td>
<td>mSEPT9</td>
<td>81</td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>Screening Test</td>
<td>81</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Players in the Colorectal Cancer Space</td>
<td>82</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Competitive Structure and Market Share Analysis</td>
<td>88</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Colon Cancer Molecular Diagnostic Testing Market Size</td>
<td>89</td>
</tr>
<tr>
<td>4.3.3.1.1</td>
<td>Global Colon Cancer testing Market</td>
<td>89</td>
</tr>
<tr>
<td>4.3.3.1.2</td>
<td>U.S. Colon Cancer testing Market</td>
<td>89</td>
</tr>
<tr>
<td>4.3.3.1.3</td>
<td>European Colon Cancer testing Market</td>
<td>90</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Market Forecasts</td>
<td>90</td>
</tr>
<tr>
<td>4.3.3.2.1</td>
<td>Revenue Forecasts</td>
<td>90</td>
</tr>
<tr>
<td>4.3.3.3</td>
<td>Market Drivers and Restraints</td>
<td>91</td>
</tr>
<tr>
<td>4.3.3.3.1</td>
<td>Market Drivers</td>
<td>91</td>
</tr>
<tr>
<td>4.3.3.3.2</td>
<td>Market Restraints</td>
<td>91</td>
</tr>
<tr>
<td>4.3.3.4</td>
<td>Colon Cancer Molecular Diagnostic Testing Assay Market and Technology Trends</td>
<td>91</td>
</tr>
<tr>
<td>4.3.3.4.1</td>
<td>Colon Cancer Molecular Diagnostic Testing Assay Market Trends</td>
<td>91</td>
</tr>
<tr>
<td>4.3.3.4.2</td>
<td>Colon Cancer Molecular Diagnostic Testing Assay Technology Trends</td>
<td>92</td>
</tr>
<tr>
<td>4.3.3.4.3</td>
<td>Colon Cancer Testing Assay Strategic Recommendations</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>Prostate Cancer Molecular Diagnostics Market</td>
<td>94</td>
</tr>
<tr>
<td>4.5</td>
<td>Other Cancer Molecular Diagnostic Markets</td>
<td>100</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Bladder Cancer</td>
<td>100</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Ovarian Cancer</td>
<td>101</td>
</tr>
<tr>
<td>4.5.2.1</td>
<td>Incidence of Ovarian Cancer</td>
<td>101</td>
</tr>
<tr>
<td>4.5.2.2</td>
<td>Key Players in Ovarian Testing market</td>
<td>102</td>
</tr>
<tr>
<td>4.5.2.3</td>
<td>Ovarian Cancer Market Size</td>
<td>103</td>
</tr>
<tr>
<td>4.5.2.4</td>
<td>Ovarian Cancer Molecular Diagnostic Testing Market Size</td>
<td>104</td>
</tr>
<tr>
<td>4.5.2.4.1</td>
<td>Global Ovarian Cancer testing Market</td>
<td>104</td>
</tr>
<tr>
<td>4.5.2.4.2</td>
<td>U.S. Ovarian Cancer testing Market</td>
<td>104</td>
</tr>
<tr>
<td>4.5.2.4.3</td>
<td>European Ovarian Cancer testing Market</td>
<td>105</td>
</tr>
<tr>
<td>4.5.2.5</td>
<td>Market Forecasts</td>
<td>105</td>
</tr>
<tr>
<td>4.5.2.5.1</td>
<td>Revenue Forecasts</td>
<td>105</td>
</tr>
<tr>
<td>4.5.2.6</td>
<td>Market Drivers and Restraints</td>
<td>106</td>
</tr>
</tbody>
</table>
4.5.2.6.1 Market Drivers 106
4.5.2.6.2 Market Restraints 106
4.5.2.7 Ovarian Cancer Molecular Diagnostic Testing Assay Market and Technology Trends 106
4.5.2.7.1 Ovarian Cancer Molecular Diagnostic Testing Assay Market Trends 106
4.5.2.7.2 Ovarian Cancer Molecular Diagnostic Testing Assay Technology Trends 106
4.5.2.7.3 Ovarian Cancer Molecular Diagnostic Testing Assay Strategic Recommendations 107
4.5.3 Lung Cancer 107
4.5.4 Melanoma 113
4.6 Molecular Diagnostic Screening Test for Cancer 114
4.6.1 Extreme Drug Resistance assay (Oncotech EDR Assay) 115
4.6.2 Multidrug Resistance Protein (MRP) 115
4.7 Companion Diagnostic Tests for Cancer Therapeutics 116

5. Business 119
5.1 Technology and Market Trends 119
5.1.1 Technology Trends 120
5.1.2 Market Trends 121
5.2 M&A Activity 123
5.3 Partnerships 125
5.4 Competitive Analysis 127
5.4.1 Primary Competitors 127
5.4.1.1 Summary of Market Strengths, Weaknesses, Opportunities and Threats 129
5.4.2 Industry Challenges and Strategic Recommendations 130
5.4.3 Commercialization of Molecular Diagnostic Products 130
5.5 SWOT Comparison of Business Models for Cancer Diagnostic Testing 132
5.6 Intellectual Property Rights 148
5.6.1 BRCA1 and BRCA2 Gene Patents 149
5.6.2 Current Patent Disputes 150

6. Reimbursement and Billing 151
6.1 Overview 151
6.2 Trends in Reimbursement Practice 151
6.2.1 Medicare Reimbursement 152
6.2.2 Analysis of ROI for MD Tests for Cancer Using Medicare Reimbursement Rules 155
6.2.3 Reimbursement for Insight Dx, MammaPrint and Oncotype Dx 156
6.2.4 Reimbursement for JAK2 Mutation Testing for Myeloproliferative Neoplasms 156
6.3 Breast Cancer Tests 156
6.4 Colon Cancer Tests 157
6.5 Trends in Patient Care and Reimbursement 159
6.6 Revenue Threats 161
6.6.1 Medicare Exceptions 162
6.6.2 Three Areas for Denial of Claims by Biomarkers 162
6.7 Billing 163
6.7.1 Medicare Billing Procedures 163
6.7.2 Medicare CPT Coding Rules for Cancer Biomarkers 164

7. Government Regulation 166
7.1 U.S. Food and Drug Administration 166
7.2 CLIA Regulations 167
7.3 Clinical Laboratory Improvement Act (CLIA) 168
7.4 State Licensing for Service Laboratories 169
7.5 FDA Treatment of Multivariate Index Assays (IVDMIAs) 170
7.6 510(k) Clearance 171
7.7 Pre-Market Approval (PMA) 171
7.8 ASRs 172
7.9 What Regulatory Guidance is Needed for Companion Biomarkers? 172
7.10 U.S. Patent and Trademark Office (USPTO) 173
7.11 IRB Approval in Clinical Trials 173
7.12 Oncology Biomarkers Qualification Initiative Project 173
7.13 FDA Clearance Picture for Insight Dx, MammaPrint, and Oncotype DX 174
7.14 FDA Packaging Requirements for Erbitux 174
7.15 Microarray Quality Control (MAQC) 174
7.16 CAP Evidence-based Recommendations to Improve the Accuracy of ER and PR Testing 175
7.17 ER and PR Proficiency Testing 176

8.1 Advantages of a Pharmacogenomic Assessment of Genetic Biomarkers to Determine Clinical Dose 177
8.2 What are Key Opportunities in Biomarker Discovery, Development and Commercialization? 177
8.3 What are the Current Obstacles in Biomarker Implementation? 177
8.4 How do Business Strategies, such as those Relating to Acquisition, Drive Biomarker Strategies? 178
8.5 What is the Right Balance between External Partnerships and Internal Infrastructure? 178
8.6 How might Novel Biomarker Development Lead to Acquisition Strategies? 178
8.7 Which Types of Genetic Biomarkers should be Developed by Diagnostic Companies? 178
8.8 What Strategies Help Translate Genetic biomarkers from Preclinical to Clinical Development? 178
8.9 In what Class of Drugs is the Value of Using Genetic biomarkers in Decision making the Highest? 179
8.10 How can Regulatory Oversight Drive Approval and Adoption of New Technologies? 180
8.11 How can Big Pharma Co-develop Genetic Biomarkers for Regulatory Acceptance? 180
8.12 How are Genetic Biomarkers being Used to reduce the Attrition Rate in Drug Development? 180
8.13 How is ROI Measured Using Genetic Biomarkers in Drug Development? 180
8.14 How might Organizational Structures Limit the Use of Genetic Biomarkers in Drug Development and How Should R&D Organizations Address This Problem? 180
8.15 How to Maximize Business Development through Biomarker Strategies? 181
8.16 What is the Best Type of Business Model for Developing Genetic Biomarkers? 181
8.17 What are Organizational Impediments in Genetic Biomarkers in Drug Development? 181
8.18 What are Internal Capabilities for Novel Biomarker Development and Application? 181
8.19 How can Key Biomarker Technical Expertise be Applied across a Complex and Highly-Stratified R&D Value Chain? 182
8.20 At what Stage of Drug Development have Genetic Biomarkers Provided the Most Benefit? 182
8.21 What Companies are the most Innovative in Development of Genetic Biomarkers? 182
8.22 Best Values for Genetic Biomarkers in Drug Development and in Diagnostics 182
8.23 Molecular Diagnostic Tests can Increase Value in an Associated Drug 183

9. Company Profiles 184
9.1 Agendia 184
9.2 ArcticDx, Inc. 184
9.3 Arcxis Biotechnologies 184
9.4 Aureon Laboratories 185
9.5 bioTheranostics (AviaraDx) 185
9.6 Clariant, Inc. 186
9.7 CombiMatrix Corporation 186
9.8 DiagnoCure 187
9.9 Epigenomics 187
9.10 Exact Sciences Corporation 187
9.11 Exagen Diagnostics, Inc. 187
9.12 Exiqon 187
9.13 Ferrer inCode 188
9.14 Genomic Health, Inc. 188
9.15 Genoptix, Inc. 189
9.16 Gen-Probe 189

© 2011 TriMark Publications, LLC. All rights reserved.
INDEX OF FIGURES

Figure 2.1: Finding Genes with Microarrays 16
Figure 2.2: Use of Microarrays for Studying Gene Expression 16
Figure 2.3: Using DNA Microarrays to Compare Cancer and Normal Cells 17
Figure 2.4: Microarrays for Prediction of Survival in Cancer 19
Figure 2.5: Finding New Drugs with Microarrays 24
Figure 2.6: Using Gene Expression Patterns to Choose Treatment 25
Figure 2.7: Segmentation of the Biomarker Development Market 26
Figure 2.8: Molecular Diagnostic Markets for Cancer Testing Globally, 2010 30
Figure 2.9: Molecular Diagnostic Markets for Cancer Testing U.S., 2010 30
Figure 3.1: Market Growth and Evolution of MD Cancer Biomarkers 44
Figure 3.2: Schematic of Molecular Diagnostics for Studying Gene Expression in Patients 50
Figure 3.3: HER-2/NEU Protein as a Target in Cancer Therapy 62
Figure 3.4: ASCO-CAP Guidelines for HER2 Testing in Breast Cancer: Equivocal Results with IHC 63
Figure 3.5: ASCO-CAP Guidelines for HER2 Testing in Breast Cancer: Results by FISH 63
Figure 3.6: Action of Herceptin in Breast Cancer Patients 64
Figure 3.7: Analysis of Cancer Tissue by Microarray 66
Figure 3.8: Global Market Size and Share of Breast Cancer Molecular Diagnostic Market, 2010 71
Figure 3.9: Incidence of CRC by Age Group 76
Figure 3.10: HNPCC Mutation Increases Risk of Cancer 86
Figure 3.11: APC Mutation Increases the Risk of Cancer 87
Figure 3.12: U.S. Market Share of Colon Cancer Molecular Diagnostic Market, 2010 89
Figure 3.13: Prostate-Specific Membrane Antigen 95
Figure 3.14: Estimates for PCA3 Test Volume in U.S., 2005-2008 97
Figure 3.15: U.S. Market Share of Ovarian Cancer Molecular Diagnostic Market, 2010 104
Figure 3.16: FDA Co-developed Products as a Model for Collaboration 126
Figure 3.17: Segmentation of the Biomarker Development Market 146
Figure 3.18: Number of Oncotype DX Tests Performed, 1991-2006 156
Figure 3.19: OBQI and the Relationship of Governmental Regulatory Agencies 174
Figure 3.20: Discovery, Validation and Use of Genetic Biomarkers 179
INDEX OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Genes and Cancer Risk</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Use of Cancer Biomarkers to Enhance Patient Care</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Targeted Drug Therapies for Cancers</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Use of Cancer Biomarkers in Drug Development</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Utility of Biomarkers as Companion Diagnostics to Drug Development</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Time Line for Development of Companion Diagnostics</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Global Market for Molecular Diagnostics Cancer Testing, 2008-2016</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>U.S. Market for Molecular Diagnostics Cancer Testing, 2008-2016</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Molecular Diagnostic Markets for Cancer Testing, 2010</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Key Players and Market Share in Global Molecular Diagnostics Cancer Testing Market</td>
<td>31</td>
</tr>
<tr>
<td>3.5</td>
<td>Business Factors Influencing Advanced Oncology Testing Services</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>Specific Diagnostic Products Categories Comprising the Cancer Diagnostic Market</td>
<td>33</td>
</tr>
<tr>
<td>3.7</td>
<td>In Vitro Cancer BioMarker Market Segments Worldwide, 2007 and 2010</td>
<td>34</td>
</tr>
<tr>
<td>3.8</td>
<td>Tumor Markers Currently in Common Use</td>
<td>36</td>
</tr>
<tr>
<td>3.9</td>
<td>Global IVD Cancer Tumor Marker Testing Market Segments Growth Rates</td>
<td>37</td>
</tr>
<tr>
<td>3.10</td>
<td>Worldwide Market Size in Dollar Volume for Tumor Markers Product Market, 2001-2010</td>
<td>37</td>
</tr>
<tr>
<td>3.11</td>
<td>U.S. Market Size in Dollar Volume for Tumor Markers Product Market, 2001-2010</td>
<td>38</td>
</tr>
<tr>
<td>3.12</td>
<td>Worldwide In Vitro Cancer Tumor Marker Diagnostics Market Size, 2001-2010</td>
<td>38</td>
</tr>
<tr>
<td>3.13</td>
<td>U.S. In Vitro Cancer Tumor Marker Diagnostics Market Size, 2001-2010</td>
<td>39</td>
</tr>
<tr>
<td>3.14</td>
<td>Japanese In Vitro Cancer Tumor Marker Diagnostics Market Size, 2001-2010</td>
<td>39</td>
</tr>
<tr>
<td>3.15</td>
<td>European In Vitro Cancer Tumor Marker Diagnostics Market Size, 2001-2010</td>
<td>39</td>
</tr>
<tr>
<td>3.16</td>
<td>Global Distribution of IVD Cancer Tumor Marker Diagnostic Testing</td>
<td>40</td>
</tr>
<tr>
<td>3.17</td>
<td>Market Share of Major Competitors in U.S. Cancer Tumor Marker Diagnostics Market</td>
<td>40</td>
</tr>
<tr>
<td>3.18</td>
<td>Major Presence in Cancer Tumor Marker Diagnostics Markets</td>
<td>40</td>
</tr>
<tr>
<td>3.19</td>
<td>Highlights of the Cancer Diagnostic Testing Segment</td>
<td>41</td>
</tr>
<tr>
<td>3.20</td>
<td>Highlights of Certified Clinical Labs Specializing in Cancer Genetics and Molecular Diagnostic Services</td>
<td>41</td>
</tr>
<tr>
<td>3.21</td>
<td>Strategies for Marketing Cancer Diagnostic Products</td>
<td>45</td>
</tr>
<tr>
<td>3.22</td>
<td>Key Elements of MD Diagnostic Companies Marketing Plan</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Estimates for the Leading Sites of New Cancer Cases and Deaths in the U.S. by Gender</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Emerging Molecular Diagnostic Technologies</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Key Elements for Business Competition in Gene Expression Profiling for Cancer</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Key Elements for Future Success in the Gene Profiling for Cancer Segment</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Companies Marketing Products in the Cancer Molecular Diagnostics Sector</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>Breast Cancer Overview</td>
<td>56</td>
</tr>
<tr>
<td>4.7</td>
<td>Overview of ER/PR Testing and Response to Therapy</td>
<td>56</td>
</tr>
<tr>
<td>4.8</td>
<td>Key Players in the Breast Cancer Molecular Diagnostic Space</td>
<td>57</td>
</tr>
<tr>
<td>4.9</td>
<td>Commercially Available Molecular Diagnostic Products for Breast Cancer Assay</td>
<td>58</td>
</tr>
<tr>
<td>4.10</td>
<td>Clinical Utility and Health Economic Benefits of Oncotype DX</td>
<td>60</td>
</tr>
<tr>
<td>4.11</td>
<td>Overview of HER2/neu and Herceptin</td>
<td>62</td>
</tr>
<tr>
<td>4.12</td>
<td>MammaPrint: Key Features</td>
<td>67</td>
</tr>
<tr>
<td>4.13</td>
<td>Oncogene Science Biomarker Group Reagents</td>
<td>68</td>
</tr>
<tr>
<td>4.14</td>
<td>Major Companies Marketing Breast Cancer Molecular Diagnostic Tests, 2010</td>
<td>70</td>
</tr>
<tr>
<td>4.15</td>
<td>Global Market for Breast Cancer Molecular Diagnostic Testing, 2005-2010</td>
<td>70</td>
</tr>
<tr>
<td>4.16</td>
<td>U.S. Market for Breast Cancer Molecular Diagnostic Testing, 2005-2010</td>
<td>71</td>
</tr>
<tr>
<td>4.17</td>
<td>Global Market Forecast for Breast Cancer Molecular Diagnostic Testing, 2011-2016</td>
<td>72</td>
</tr>
<tr>
<td>4.18</td>
<td>U.S. Market Forecast for Breast Cancer Molecular Diagnostic Testing, 2011-2016</td>
<td>72</td>
</tr>
<tr>
<td>4.19</td>
<td>Breast Cancer Molecular Diagnostic Testing Market: Market Drivers Ranked in Order of Impact</td>
<td>73</td>
</tr>
<tr>
<td>4.20</td>
<td>Breast Cancer Molecular Diagnostic Testing Market: Market Restraints Ranked in Order of Impact</td>
<td>73</td>
</tr>
</tbody>
</table>
Table 4.21: Summary of Strengths, Weaknesses, Opportunities and Threats of the Breast Cancer Molecular Diagnostic Market
Table 4.22: Colorectal Cancer Overview
Table 4.23: KRAS Mutation Assay
Table 4.24: KRAS Assays by Analytical Type
Table 4.25: KRAS Mutation Analysis Summary
Table 4.26: DxS KRAS Mutation Test Summary
Table 4.27: KRAS and BRAF in Clinical Use
Table 4.28: Product Development Opportunities in Cancer Tumor Types, 2008
Table 4.29: Key Players in the Colorectal Cancer Molecular Diagnostic Space
Table 4.30: ArcticDx Genetic Test, Colo Risk
Table 4.31: NexCourse CRC Test Offering and Treatment Direction
Table 4.32: Global Market for Molecular Diagnostic Colon Cancer Testing, 2005-2010
Table 4.33: U.S. Market for Molecular Diagnostic Colon Cancer Testing, 2005-2010
Table 4.34: Global Market Forecast for Colon Cancer Molecular Diagnostic Testing, 2011-2016
Table 4.35: U.S. Market Forecast for Colon Cancer Molecular Diagnostic Testing, 2010-2016
Table 4.36: Colon Cancer Molecular Diagnostic Testing Market: Market Drivers Ranked in Order of Impact
Table 4.37: Colon Cancer Molecular Diagnostic Testing Market: Market Restraints Ranked in Order of Impact
Table 4.38: Summary of Strengths, Weaknesses, Opportunities and Threats of the Colon Cancer Market
Table 4.39: Players in the Prostate Cancer Molecular Diagnostic Space
Table 4.40: Players in the Bladder Cancer Molecular Diagnostic Space
Table 4.41: Commercially Available Molecular Diagnostic Products for Ovarian Cancer Assay
Table 4.42: Global Market for Molecular Diagnostic Ovarian Cancer Testing, 2005-2010
Table 4.43: U.S. Market for Molecular Diagnostic Ovarian Cancer Testing, 2005-2010
Table 4.44: Global Market Forecast for Ovarian Cancer Molecular Diagnostic Testing, 2011-2016
Table 4.45: U.S. Market Forecast for Ovarian Cancer Molecular Diagnostic Testing, 2010-2016
Table 4.46: Ovarian Cancer Molecular Diagnostic Testing Market: Market Drivers in Order of Impact
Table 4.47: Ovarian Cancer Molecular Diagnostic Testing Market: Market Restraints in Order of Impact
Table 4.48: Summary of Strengths, Weaknesses, Opportunities and Threats of the Ovarian Cancer Market
Table 4.49: Lung Cancer Survival Rates
Table 4.50: Lung Cancer Facts
Table 4.51: Potential of Cancer Biomarkers in Drug Delivery and Development
Table 4.52: Barriers to Adoption of Biomarkers in Clinical Use
Table 5.1: Technology Trends in Cancer Testing
Table 5.2: Trends in Theranostics
Table 5.3: Market Trends in Cancer Testing
Table 5.4: Molecular Diagnostics Cancer Market: Market Drivers Ranked in Order of Impact
Table 5.5: Molecular Diagnostics Cancer Market: Market Restraints Ranked in Order of Impact
Table 5.6: Companies That Offer Products to Profile Gene Expression in Breast Cancer
Table 5.7: Principal Competitive Factors in the Cancer Screening Market
Table 5.8: Summary of Strengths, Weaknesses, Opportunities and Threats of the Glucose Point of Care Market
Table 5.9: Molecular Diagnostics Cancer Market: Strategic Recommendations on Molecular Diagnostic Sector Business Functions
Table 5.10: Total Molecular Diagnostics Cancer Market: Impact of Top Industry Challenges (U.S.)
Table 5.11: Utility of Biomarkers as Companion Diagnostics to Drug Development
Table 6.1: CPT Codes for Tumor Markers
Table 6.2: Genomic Health Oncotype DX Sales, 2006-2010
Table 6.3: Drivers in KRAS Testing
Table 6.4: Factors Determining Third-Party Payment for Advanced Cancer Tests
Table 7.1: Rules that Affect the Ability of a Cancer Diagnostic Service Lab to Conduct Business
Table 7.2: Focus Areas for the FDA Critical Path Initiative
Table A1: Tumor Markers Currently in Common Use
1. Overview

1.1 Statement of Report

This report describes the specific segment of the in vitro diagnostics (IVD) market known as molecular diagnostics (MD), with a specialization in the MD tests for cancer. In the current medical diagnostics market, molecular diagnostics for cancer testing offers one of the brightest areas for growth and innovation. The confluence of breakthroughs in genomics, proteomics, and the development of microarray devices to measure analytes in the blood and various body tissues, has led to this revolutionary market segment offering the power of advanced analytical techniques to the diagnosis and treatment of cancer.

This market report analyzes the size and growth of the molecular diagnostics market in its applications for cancer detection and therapy, examining the factors that influence the various market segments and the dollar volume of sales, both in the United States and worldwide. The cancer market has been divided into the following parts for examination:

- Breast cancer molecular diagnostics market.
- Colorectal cancer molecular diagnostics market.
- Prostate cancer molecular diagnostics market.
- Other cancer molecular diagnostic market segments.

This segregation is based upon the available technology platform advances and the number of companies interested in that segment of the cancer market.

1.2 About This Report

This report includes the following features:

- It examines the generally-accepted clinical analytical activities in use today in the molecular diagnostics sector for diagnosis and management of cancer. It includes the prevalent clinical-measurement devices such as genomic profiling analysis (IVDMIAs) and the accompanying reagents and supplies as utilized in hospitals and large reference and specialty CLIA licensed laboratories.
- It discusses the potential benefits of the molecular diagnostics technique for various sectors of the medical and scientific communities, and it assesses the market drivers and bottlenecks for MD tests from the perspective of these communities.
- It establishes the current total MD market size and future growth of the molecular diagnostics market for cancer management, and analyzes the current size and growth of various segments.
- It assesses various business models in molecular diagnostics for cancer, including CLIA licensed specialty labs, general reference labs and reagent kit marketing, and provides strategic recommendations for near-term business opportunities.
- It examines the products offered and roles played by companies that have invested significantly in this market, and it provides current and forecasted market shares by these companies.
- Discusses new collaborative business models that bring together diagnostics and therapeutics.
- Evaluates the role that cancer prognostic assays can play in partnership opportunities in personalized medicine.
1.3 **Scope of the Report**

The goal of this study is to review the market for molecular diagnostics testing equipment and supplies using reagents and instruments for analysis of individual components in body tissues and fluids. Toward this goal, this review answers the following key questions:

- Which companies are utilizing new, cutting-edge technologies to develop, validate and market molecular tests for clinical use in cancer management?
- What are the current impediments to incorporating promising molecular tests into clinical practice?
- Which new molecular diagnostics tests show the most promise for approval?
- What are the economic challenges to gaining approval? And what kind is best?
- How can regulatory oversight drive approval and adoption of new technologies?
- Which alliances show the greatest synergy in bringing molecular diagnostics tests to market?
- Which shared technologies are driving the most encouraging development?

This examination surveys most of the biotech companies known to be currently marketing, manufacturing or developing instruments and reagents for the molecular diagnostics market for cancer management, in both the U.S. and the world. Each company is discussed in depth, with sections on its history, product line, business and marketing analysis, and a subjective commentary of the company’s market position.

The U.S. is the focus of this report. Primary attention is paid to the specialty and reference lab market segment and, separately, to the instruments, reagents and supplies marketed by the leading companies in this segment. Market size, growth rates and market components for instruments, reagents, controls and consumables used in this area are also analyzed.

1.4 **Objectives**

The main objectives of this analysis are:

- Identifying viable technology drivers through a comprehensive look at platform technologies for molecular diagnostics in cancer management, including probe-based nucleic acid assays, microarrays and sequencing.
- Obtaining a complete understanding of the chief characteristics of molecular diagnostics tests—namely, predictive, screening, prognostic, monitoring, pharmacogenomic and theranostic tests—from their basic principles to their applications.
- Discovering feasible market opportunities by identifying high-growth applications in different clinical cancer diagnostic areas (breast cancer being the leading one).
- Focusing on global industry development through an in-depth analysis of the major world markets for molecular diagnostics for cancer management, including growth forecasts.

The emphasis in this report is on the clinical use of molecular diagnostics tests for cancer diagnosis and management. The reader should consult other TriMark Publications reports at http://www.trimarkpublications.com for detailed discussions of important individual market segments related to the molecular diagnostics market or routine testing. For example, TriMark has separate reports on cancer diagnostic testing, clinical chemistry testing, high-growth diagnostic tests markets, blood gas and electrolytes, over-the-counter (OTC) diagnostic testing markets, and point-of-care diagnostic testing. TriMark also provides a market report titled *DNA Sequencing and PCR Markets*, which discusses the analytical methods and polymerase chain reaction (PCR) technology platforms used in molecular diagnostics.
1.5 Methodology

The author of this report holds a Ph.D. in biochemistry from the University of Minnesota and has had post doctoral experience at the University of Connecticut School of Medicine. He has taught at Quinnipiac University and the Tufts School of Medicine, and has been a senior scientist at Pfizer Pharmaceutical Laboratories in drug development. He also has many decades of experience in science writing and as a medical industry analyst. He has over 30 years of experience in laboratory testing and instrument and reagent development technology as a licensed clinical laboratory director, as well as extensive experience in senior level management positions in biotech and medical service companies. He was the first director and a founder of Dianon Laboratories, now part of LabCorp, and was a pioneer in bringing cancer diagnostic tests, including an early PSA, to the clinic.

Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites, as well as annual reports for publicly-held firms. Additional sources of information include non-governmental organizations (NGOs) such as the World Health Organization (WHO) and governmental entities such as the U.S. Department of Health and Human Services (HHS), the National Institutes of Health (NIH), the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. The information in this study was obtained from sources that we believe to be reliable, but we do not guarantee the accuracy, adequacy or completeness of any information or omission or for the results obtained by the use of such information. Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes. Senior managers from major company players were interviewed for part of the information in this report.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as Sector Snapshots that it publishes annually. TriMark extracts relevant data and analytics from its research as part of this data collection.

Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.

TriMark Publications Report, Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report in TriMark Publications includes the following items:

- Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly-available data and proprietary databases.

- Formulating a study outline with the assigned writer, including important items, as follows:
 - Market and product segment grouping, and evaluating their relative significance.
 - Key competitors’ evaluations, including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
 - End-user research to evaluate analytical significance in market estimation.
 - Supply chain research and analysis to identify any factors affecting the market.
• New technology platforms and cutting-edge applications.

• Identifying the key technology and market trends that drive or affect these markets.

• Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.

• Completing a confirmatory primary research assessment of the report’s findings with the assistance of expert panel partners from the industry being analyzed.

1.6 Executive Summary

Molecular diagnostics is a rapidly-advancing area of research and medicine, with new technologies and applications being continually added. The technologies that come under the umbrella of molecular diagnostics include first-generation amplification, DNA probes, fluorescent *in-situ* hybridization (FISH), second-generation biochips and microfluidics, next-generation signal detection, biosensors and molecular labels, and gene expression profiling using microarrays. These technologies are improving the discovery of therapeutic molecules for cancer, the screening, diagnosis and classification of cancer patients, and the optimization of drug therapy. Over the past several years, this rapidly evolving field has seen several fascinating developments, including:

• Impact on pharmacogenomics and molecular epidemiology.
• Integration of specialty labs and gene expression profiling into clinical practice.
• Integration into therapeutic choices for cancer and the use of diagnostics for predicting disease recurrence.
• Development of lab-on-a-chip devices.
• Development of companion diagnostics for drug development.
• Use of gene expression profiling for determining the efficacy of therapeutic drugs for cancer.

More than [REDacted] companies market products in molecular diagnostics. Most of these are relatively small, with annual sales between $20 million and $100 million. However, several major diagnostic companies, such as Abbott Laboratories, Siemens and Roche Diagnostics have substantial market shares in each category of the molecular diagnostics market, including cancer testing. On the other hand, small and medium-sized companies like Genomic Health and Myriad, with innovative products and technology platforms, have great opportunities for success in the field of molecular diagnostics as applied to cancer. The exciting thing here is that this market segment is characterized by unprecedented growth rates, which stand in contrast with the low or even negative growth rates of mature laboratory-testing segments in fields such as hematology and microbiology.

Research in genomics has led to a new healthcare paradigm, where a disease is understood at the molecular level, allowing patients to be diagnosed based on their unique information and then treated with drugs designed to work on specific molecular targets for cancer. Gene expression profiling will continue to increase as companies in the pharmaceutical industry work with diagnostic companies to accelerate their drug discovery and development efforts in cancer therapeutics by using companion diagnostic tests in clinical trials, and later as guides to optimum efficaciousness during cancer therapy through targeted drugs. These efforts are expected to create a demand for increasingly effective cancer diagnostic tests. Among the most important questions that future genomics research will address are:

• How do genetic polymorphisms—the variations in DNA sequences among individuals—contribute to susceptibility to chronic diseases such as cancer?
• How do genetic variations influence individual responses to drug therapies?
• How do differences in gene expression in various tissues affect development of diseases like cancer?
• How does gene expression contribute to health, and how do changes in gene expression contribute to long term development of cancer?
• How does gene expression regulate recurrence of cancer?
Most industry experts believe that over the next few decades, the use of molecular diagnostics will grow rapidly, in the order of 10% to 20% per year, and will have a revolutionary impact on the way clinical medicine is practiced. A particularly important emerging area of focus for molecular diagnostic services is cancer. In the U.S. alone, the American Cancer Society indicates that individuals are diagnosed with cancer annually, and this rate is expected to grow rapidly as the overall population, including the “baby boomer” generation, ages. Advances in genomics are making it possible to choose therapy appropriate to an individual’s genetic makeup. The translation of genomic information into novel molecular diagnostics products is taking place at both the gene and protein levels.

The cancer segment of molecular diagnostics, while not the largest, is growing the fastest. As molecular diagnostics technologies continue to grow, they offer the potential to move from diagnostics to prognostics and thranostics. Still, the molecular diagnostics market for cancer is difficult to estimate, as it overlaps with the broader IVD market and includes the more routine, older serum tests for cancer (CEA, PSA, Ca125, etc.) and is less well-defined than the pharmaceutical or device markets. However, molecular diagnostics is now being used in cancer management in real clinical situations to evaluate patients. Factors that drive the molecular diagnostics business are:

- Personalization of diagnosis and therapy by identifying genes associated with complex diseases, optimizing the drug response, and reducing side effects and failure rates (pharmacogenetics).
- Need for faster methods of diagnosing disease states and medical disorders earlier, and for a powerful, reliable tool for therapy decisions.
- Need for an automated analysis and data evaluation.
- Need to contain or decrease healthcare costs without compromising accuracy or reliability.

Molecular diagnostics using genomic technologies are being used to characterize tumors at the molecular level, and several clinical successes have shown that such information can guide the design of drugs targeted to a specific tumor type. Emerging classes of cancer biomarkers such as microRNAs and epigenetics are also important in this context the emerging cancer personalized medicine market landscape includes:

- Cancer diagnostic tests on the marketplace and in development that are developed as companion-diagnostics (coupled with a therapeutic regimen).
- Landscape of In Vitro Diagnostic Multivariate Index Assays (IVDMIAs)—multigene predictors with prognostic/predictive value.
- Key personalized medicine products in the breast cancer, colon cancer, etc. market spaces—together with the characteristics/features of these products—HER2, Oncotype DX™, MammaPrint®, UGT1A1, K-RAS, EGFR, etc.

One of the main barriers to further progress is identifying the biomarkers of cancer that predict who will benefit from a particular targeted therapy. The market for advanced cancer diagnostic testing will increase from an estimated $ in , to over $ by . Business factors influencing advanced oncology testing services are:

- Demographic shifts to an older (>60 years) population.
- An increased incidence of cancer within an aging population.
- New cancer therapies.
- An expanding test menu for prediction and efficacy.
- Recent trends indicate that treatment decisions are likely to involve the assessment of a complex panel of protein and gene based testing, rather than a single test.
- Diagnostic and predictive testing for these therapies will likely become increasingly complex, and there will be increased demand for sophisticated tests.
- Advanced molecular tests will also require additional expertise to interpret test results and/or assist pathologists in such interpretations.
- Pharmaceutical companies’ demand for high potential targeted therapies will continue to grow under pressure from the FDA for more effective drugs.
- Four thousand hospitals and healthcare networks in the U.S. together with their oncology and pathology staffs constitute a large readymade market.
• One thousand biopharmaceutical companies developing new drugs and partnering with large pharma companies for targeted therapies.
• Emergence of CLIA certified specialty labs for advanced testing services.

Pharmaceutical companies are investing billions of dollars in the development of high-potential targeted therapies, one of the fastest growing segments of oncology drug development. Many of these therapies will require a specific test (referred to as a “theranostic” or “companion diagnostic”) to assist physicians in selecting the right drug for the right patient. The theranostic is likely to accelerate the process for drug approval and market introduction by guiding selection of the most appropriate patients for the clinical trials. The Food and Drug Administration’s “Critical Path Initiative” is facilitating a national effort to modernize the scientific process through which a potential human drug, biological product or medical device is transformed from a discovery or “proof-of-concept” into a medical product.

A classic example of a targeted therapy that uses a companion diagnostic test is Genentech, Inc.’s Herceptin®, used to target breast tumor cells that have a significant amount of HER2/neu protein on the cell membrane. The National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world’s leading cancer centers, currently mandates that all new breast tumors be tested for HER2/neu status levels. Cancer diagnostic companies provide a wide range of cancer diagnostic and consultative services which include technical laboratory services and professional interpretation. Specific diagnostic products categories comprising the cancer diagnostic market are:

• Immunoassays for serum cancer markers, receptor assays and hormone assays.
• Mammography equipment.
• Clinical chemistry reagents (occult blood reagents, enzymes, serum proteins).
• DNA and gene expression reagents and products (microarrays and chips).
• Cytological products.
• Histological reagents.
• Immunocytochemistry products.
• Immunohistochemistry reagent.

There are five basic business models for entry into the cancer diagnostic market:

• Pure play IVDIMA specialty tumor analysis: Myriad, Genomic Health, Agendia, DxS, Clarient, etc.
• Mixed specialty cancer diagnostic labs offering cytology, flow cytometry, anatomic pathology, immunohistochemistry, around microarray specialty MD testing: Neogenomics, Redpath, Genoptix, etc.
• General clinical reference labs (national and community): Quest, LabCorp, etc.
• Diagnostic device and reagent developers: Exact Sciences, Abbott, Roche, etc.
• Companion diagnostics development in partnership with a pharmaceutical company.

Market trends in cancer testing:

• Rapidly growing market segment in cancer diagnosis.
• Expansion of Pharma DX collaborations.
• Strong growth of esoteric testing.
• Strong move toward targeted therapies for cancer.
• Expansion of molecular diagnostics to drive therapy decisions.
• Minimal pressure on reimbursements.
• Lack of capital will increase opportunities to license markers.
• Emerging opportunity for molecular pathology space.
• Focus on delivering companion diagnostic information for cancer therapies.
• Tumor types represent % of ongoing Phase II and Phase III therapeutic trials.
• Use of cancer profiles for reporting data (Clarien Insight DX).
• Increased M&A activity.